Skocz do zawartości

  •  
  • Mini kompendium
  • MimeTeX
  • Regulamin

- zdjęcie

Mariusz M

Rejestracja: 11 Sep 2010
Offline Ostatnio: wczoraj, 10:46
*****

#129232 Równanie różniczkowe

Napisane przez Mariusz M w 21.04.2017 - 12:16

Można też skorzystać z podanej postaci czynnika całkującego

 

\mu=\mu\left[\omega\left(x,y\right)\right]\\<br>\\P=P\left(x,y\right)\\<br>\\Q=Q\left(x,y\right)\\<br>\\\frac{\partial \mu P}{\partial y}=\frac{\partial \mu Q}{\partial x}\\<br>\\\frac{\partial \mu}{\partial y}P+\mu\frac{\partial P}{\partial y}=\frac{\partial \mu}{\partial x}Q+\mu\frac{\partial Q}{\partial x}\\<br>\\\frac{\partial \mu}{\partial y}P-\frac{\partial \mu}{\partial x}Q=\mu\frac{\partial Q}{\partial x}-\mu\frac{\partial P}{\partial y}\\<br>\\\frac{\partial \mu}{\partial y}P-\frac{\partial \mu}{\partial x}Q=\mu\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\\<br>\\\frac{\mbox{d}\mu}{\mbox{d}\omega}\cdot\frac{\partial \omega}{\partial y}P-\frac{\mbox{d}\mu}{\mbox{d}\omega}\cdot\frac{\partial \omega}{\partial x}Q=\mu\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\\<br>\\\frac{\mbox{d}\mu}{\mbox{d}\omega}\left(\frac{\partial \omega}{\partial y}P-\frac{\partial \omega}{\partial x}Q\right)=\mu\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\\<br>\\\frac{\mbox{d}\mu}{\mu}=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{\frac{\partial \omega}{\partial y}P-\frac{\partial \omega}{\partial x}Q}\mbox{d}\omega\\<br>\\\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{\frac{\partial \omega}{\partial y}P-\frac{\partial \omega}{\partial x}Q}=\varphi\left(\omega\right)\\<br>\\\frac{\mbox{d}\mu}{\mu}=\varphi\left(\omega\right)\mbox{d}\omega<br>\\


  • 1


#129199 Całaka 14

Napisane przez Mariusz M w 04.04.2017 - 22:53

\int{\sqrt{1-x^2}\arcsin{x}\mbox{d}x}=\int{\frac{1-x^2}{\sqrt{1-x^2}}\arcsin{x}\mbox{d}x}\\</p>\\<p>=\int{\frac{\arcsin{x}}{\sqrt{1-x^2}}\mbox{d}x}+\int{\frac{-x}{\sqrt{1-x^2}}\left(x\arcsin{x}\right)\mbox{d}x}\\</p>\\<p>=\int{\frac{\arcsin{x}}{\sqrt{1-x^2}}\mbox{d}x}+x\sqrt{1-x^2}\arcsin{x}-\int{\sqrt{1-x^2}\left(\arcsin{x}+\frac{x}{\sqrt{1-x^2}}\right)\mbox{d}x}\\</p>\\<p>\int{\sqrt{1-x^2}\arcsin{x}\mbox{d}x}=\int{\frac{\arcsin{x}}{\sqrt{1-x^2}}\mbox{d}x}+x\sqrt{1-x^2}\arcsin{x}-\int{\sqrt{1-x^2}\arcsin{x}\mbox{d}x}-\int{x\mbox{d}x}\\</p>\\<p>2\int{\sqrt{1-x^2}\arcsin{x}\mbox{d}x}=\frac{1}{2}\arcsin^2{x}+x\sqrt{1-x^2}\arcsin{x}-\frac{1}{2}x^2+C\\</p>\\<p>\int{\sqrt{1-x^2}\arcsin{x}\mbox{d}x}=\frac{1}{4}\arcsin^2{x}+\frac{1}{2}x\sqrt{1-x^2}\arcsin{x}-\frac{1}{4}x^2+C\\</p>\\<p>


  • 1


#129198 Całka 18

Napisane przez Mariusz M w 04.04.2017 - 20:03

Dosyć dobry efekt daje pierwsze podstawienie Eulera ale jak to modnie jest unikać tych podstawień 

 

\int{\frac{5x^2-2x+10}{\sqrt{3x^2-5x+8}}\mbox{d}x}\\</p>\\<p>\sqrt{3}\int{\frac{5x^2-2x+10}{\sqrt{9x^2-15x+24}}\mbox{d}x}\\</p>\\<p>\sqrt{9x^2-15x+24}=t-3x\\</p>\\<p>9x^2-15x+24=t^2-6tx+9x^2</p>\\<p>-15x+24=t^2-6tx\\</p>\\<p>6tx-15x=t^2-24\\</p>\\<p>x\left(6t-15\right)=t^2-24\\</p>\\<p>x=\frac{t^2-24}{6t-15}\\</p>\\<p>t-3x=\frac{6t^2-15t-3t^2+72}{6t-15}=\frac{3t^2-15t+72}{6t-15}\\</p>\\<p>\mbox{d}x=\frac{2t\left(6t-15\right)-6\left(t^2-24\right)}{\left(6t-15\right)^2}\mbox{d}t\\</p>\\<p>\mbox{d}x=\frac{6t^2-30t+144}{\left(6t-15\right)^2}\mbox{d}t\\</p>\\<p>\sqrt{3}\int{\left(5\frac{\left(t^2-24\right)^2}{\left(6t-15\right)^2}-2\frac{t^2-24}{6t-15}+10\right)\frac{6t-15}{3t^2-15t+72}\cdot\frac{2\left(3t^2-15t+72\right)}{\left(6t-15\right)^2}\mbox{d}t}\\</p>\\<p>\sqrt{3}\int{\left(\frac{5\left(t^4-48t^2+576\right)-2\left(t^2-24\right)\left(6t-15\right)+10\left(36t^2-180t+225\right)}{\left(6t-15\right)^2}\right)\cdot\frac{2}{6t-15}\mbox{d}t}\\</p>\\<p>2\sqrt{3}\int{\frac{5t^4-240t^2+2880-2\left(6t^3-15t^2-144t+360\right)+360t^2-1800t+2250}{\left(6t-15\right)^3}\mbox{d}t}\\</p>\\<p>2\sqrt{3}\int{\frac{5t^4-240t^2+2880-12t^3+30t^2+288t-720+360t^2-1800t+2250}{\left(6t-15\right)^3}\mbox{d}t}\\</p>\\<p>2\sqrt{3}\int{\frac{5t^4-12t^3+150t^2-1512t+4410}{\left(6t-15\right)^3}\mbox{d}t}\\</p>\\<p>\frac{2\sqrt{3}}{27}\int{\frac{5t^4-12t^3+150t^2-1512t+4410}{\left(2t-5\right)^3}\mbox{d}t}\\</p>\\<p>-\frac{\sqrt{3}}{54}\int{\left(5t^4-12t^3+150t^2-1512t+4410\right)\frac{\left(-4\right)}{\left(2t-5\right)^3}\mbox{d}t}\\</p>\\<p>-\frac{\sqrt{3}}{54}\left(\frac{5t^4-12t^3+150t^2-1512t+4410}{\left(2t-5\right)^2}-\int{\frac{20t^3-36t^2+300t-1512}{\left(2t-5\right)^2}\mbox{d}t}\right)\\</p>\\<p>-\frac{\sqrt{3}}{54}\left(\frac{5t^4-12t^3+150t^2-1512t+4410}{\left(2t-5\right)^2}+\int{\left(10t^3-18t^2+150t-756\right)\frac{\left(-2\right)}{\left(2t-5\right)^2}\mbox{d}t}\right)\\</p>\\<p>-\frac{\sqrt{3}}{108}\left(\frac{10t^4-24t^3+300t^2-3024t+8820}{\left(2t-5\right)^2}+\frac{20t^3-36t^2+300t-1512}{2t-5}-\int{\frac{60t^2-72t+300}{2t-5}\mbox{d}t}\right)\\</p>\\<p>-\frac{\sqrt{3}}{108}\left(\frac{10t^4-24t^3+300t^2-3024t+8820}{\left(2t-5\right)^2}+\frac{20t^3-36t^2+300t-1512}{2t-5}-\int{\left(30t+39\right)\mbox{d}t}-\int{\frac{495}{2t-5}\mbox{d}t}\right)\\</p>\\<p>-\frac{\sqrt{3}}{108}\left(\frac{10t^4-24t^3+300t^2-3024t+8820}{\left(2t-5\right)^2}+\frac{20t^3-36t^2+300t-1512}{2t-5}-15t^2-39t-\frac{495}{2}\ln{\left|2t-5\right|}\right)+C\\</p>\\<p>


  • 2


#129197 Całka 23, Ostrogradskiego można

Napisane przez Mariusz M w 04.04.2017 - 19:22

Jeśli chodzi o zalety metody Ostrogradskiego to nie wymaga ona rozkładu mianownika na czynniki

co pozwoli zredukować jego stopień

Aby uzyskać mianowniki wystarczy policzyć NWD\left(M(x),M'(x)\right)

algorytmem kolejnych dzieleń

Jeżeli mamy podany rozkład mianownika na czynniki to zalety stosowania metody Ostrogradskiego ujawniają się gdy

mianownik ma wielokrotne pierwiastki zespolone


  • 1


#129196 Całka pierwiastek

Napisane przez Mariusz M w 04.04.2017 - 12:59

\int{x^{\frac{1}{3}}\left(7-3x^2\right)^{\frac{1}{3}}\mbox{d}x}\\</p>\\<p>m=\frac{1}{3}\\</p>\\<p>n=2\\</p>\\<p>p=\frac{1}{3}\\</p>\\<p>\frac{m+1}{n}=\frac{2}{3}\\</p>\\<p>\frac{m+1}{n}+p=1 \in \mathbb{Z}\\</p>\\<p>t^3=\frac{7-3x^2}{x^2}</p>\\<p>


  • 1


#129117 Rozwiąż równanie różnicowe

Napisane przez Mariusz M w 19.03.2017 - 04:58

y_{n+2}-4y_{n+1}+4y_{n}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>y_{n}-4y_{n-1}+4y_{n-2}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>y_{n}=4y_{n-1}-4y_{n-2}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>Y\left(t\right)=\sum_{n=0}^{\infty}y_{n}t^n\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=\sum_{n=2}^{\infty}4y_{n-1}t^n+\sum_{n=2}^{\infty}{-4y_{n-2}t^n}\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=4t\sum_{n=2}^{\infty}y_{n-1}t^{n-1}-4t^2\sum_{n=2}^{\infty}{y_{n-2}t^{n-2}}\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=4t\sum_{n=1}^{\infty}y_{n}t^{n}-4t^2\sum_{n=0}^{\infty}{y_{n}t^{n}}\\</p>\\<p>\sum_{n=0}^{\infty}y_{n}t^{n}-3-2t=4t\left(\sum_{n=0}^{\infty}y_{n}t^{n}-3\right)-4t^2\sum_{n=0}^{\infty}{y_{n}t^{n}}\\</p>\\<p>Y\left(t\right)-3-2t=4tY\left(t\right)-12t-4t^2Y\left(t\right)\\</p>\\<p>Y\left(t\right)\left(1-4t+4t^2\right)=-10t+3\\</p>\\<p>Y\left(t\right)=\frac{-10t+3}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\frac{5-10t-2}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\frac{5}{1-2t}-\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}2^{n}t^n=\frac{1}{1-2t}\\</p>\\<p>\frac{\mbox{d}}{\mbox{d}t}\left(\sum_{n=0}^{\infty}2^{n}t^n\right)=\frac{\mbox{d}}{\mbox{d}t}\left(\frac{1}{1-2t}\right)\\</p>\\<p>\sum_{n=0}^{\infty}n2^{n}t^{n-1}=-\frac{1}{\left(1-2t\right)^2}\cdot\left(-2\right)\\</p>\\<p>\sum_{n=1}^{\infty}n2^{n}t^{n-1}=\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}\left(n+1\right)2^{n+1}t^{n}=\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}\left(n+1\right)2^{n}t^{n}=\frac{1}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\sum_{n=0}^{\infty}5\cdot 2^{n}t^{n}-2\sum_{n=0}^{\infty}\left(n+1\right)2^{n}t^n\\</p>\\<p>y_{n}=5\cdot 2^{n}-2\left(n+1\right)\cdot 2^{n}\\</p>\\<p>y_{n}=\left(3-2n\right)\cdot 2^{n}</p>\\<p>


  • 1


#129062 Całka 29

Napisane przez Mariusz M w 05.03.2017 - 06:11

Proponuję rozbić na dwie całki  w jednej licznik skróci się z mianownikiem a drugą można będzie policzyć całkując przez części

 

\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\int{\frac{x^2+x+25}{\left(x^2+x+25\right)^2}\mbox{d}x}+\frac{1}{198}\int{\left(99x^2-49x+25\right)\cdot\frac{2x+1}{\left(x^2+x+25\right)^2}\mbox{d}x}\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\int{\frac{1}{\left(x^2+x+25\right)}\mbox{d}x}+\frac{1}{198}\int{\left(99x^2-49x+25\right)\cdot\frac{2x+1}{\left(x^2+x+25\right)^2}\mbox{d}x}\\</p>\\<p>

 

Najpierw całkujemy przez części a później dodajemy całki

 

Przydatne będzie też podstawienie x+\frac{1}{2}=\frac{3}{2}\sqrt{11}t

 

Jak znalazłem ten rozkład ?

 

Podzieliłem licznik przez pochodną trójmianu kwadratowego z mianownika

Otrzymałem  resztę która była stałą, do tej stałej dodałem i odjąłem taki składnik aby otrzymać postać kanoniczną trójmianu kwadratowego z mianownika

 

\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\int{\frac{x^2+x+25}{\left(x^2+x+25\right)^2}\mbox{d}x}+\frac{1}{198}\int{\left(99x^2-49x+25\right)\cdot\frac{2x+1}{\left(x^2+x+25\right)^2}\mbox{d}x}\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\int{\frac{1}{\left(x^2+x+25\right)}\mbox{d}x}+\frac{1}{198}\int{\left(99x^2-49x+25\right)\cdot\frac{2x+1}{\left(x^2+x+25\right)^2}\mbox{d}x}\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\int{\frac{1}{\left(x^2+x+25\right)}\mbox{d}x}-\frac{1}{198}\frac{99x^2-49x+25}{x^2+x+25}+\frac{1}{198}\int{\frac{198x-49}{x^2+x+25}\mbox{d}x}\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\frac{99x^2-49x+25}{x^2+x+25}+\frac{1}{99}\int{\frac{99x-25}{x^2+x+25}\mbox{d}x}\\</p>\\<p>\frac{1}{99}\int{\frac{99x-25}{x^2+x+25}\mbox{d}x}=\frac{1}{99}\int{\frac{99x-25}{\left(x+\frac{1}{2}\right)^2+\frac{99}{4}}\mbox{d}x}\\</p>\\<p>x+\frac{1}{2}=\frac{3}{2}\sqrt{11}t\\</p>\\<p>\mbox{d}x=\frac{3}{2}\sqrt{11}\mbox{d}t\\</p>\\<p>\frac{\sqrt{11}}{66}\int{\frac{99\left(\frac{3}{2}\sqrt{11}t-\frac{1}{2}\right)-25}{\frac{99}{4}t^2+\frac{99}{4}}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{66}\int{\frac{\frac{297}{2}\sqrt{11}t-\frac{149}{2}}{\frac{99}{4}t^2+\frac{99}{4}}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{4 \cdot 33}\cdot\frac{4}{99}\int{\frac{297\sqrt{11}t-149}{t^2+1}\mbox{d}t}\\</p>\\<p>\frac{297\cdot 11}{3267}\int{\frac{t}{t^2+1}\mbox{d}t}-\frac{149\sqrt{11}}{3267}\int{\frac{1}{t^2+1}\mbox{d}t}\\</p>\\<p>=\int{\frac{t}{t^2+1}\mbox{d}t}-\frac{149\sqrt{11}}{3267}\int{\frac{1}{t^2+1}\mbox{d}t}\\</p>\\<p>=\frac{1}{2}\ln{\left|t^2+1\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(t\right)}+C\\</p>\\<p>\frac{1}{2}\ln{\left|x^2+x+25\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(\frac{\sqrt{11}}{33}\left(2x+1\right)\right)}+C\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=-\frac{1}{198}\frac{99x^2-49x+25}{x^2+x+25}+\frac{1}{2}\ln{\left|x^2+x+25\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(\frac{\sqrt{11}}{33}\left(2x+1\right)\right)}+C\\</p>\\<p>

 

 

Wynik można jeszcze uprościć dzieląc licznik przez mianownik

 

 

Można też liczyć sposobem podanym przez Ostrogradskiego

 

\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=\frac{a_{1}x+a_{0}}{x^2+x+25}+\int{\frac{b_{1}x+b_{0}}{x^2+x+25}\mbox{d}x}\\</p>\\<p>\frac{x^3}{\left(x^2+x+25\right)^2}=\frac{a_{1}\left(x^2+x+25\right)-\left(a_{1}x+a_{0}\right)\left(2x+1\right)}{\left(x^2+x+25\right)^2}+\frac{b_{1}x+b_{0}}{x^2+x+25}\\</p>\\<p>\frac{x^3}{\left(x^2+x+25\right)^2}=\frac{a_{1}\left(x^2+x+25\right)-\left(a_{1}x+a_{0}\right)\left(2x+1\right)+\left(b_{1}x+b_{0}\right)\left(x^2+x+25\right)}{\left(x^2+x+25\right)^2}\\</p>\\<p>x^3=a_{1}\left(x^2+x+25\right)-\left(a_{1}x+a_{0}\right)\left(2x+1\right)+\left(b_{1}x+b_{0}\right)\left(x^2+x+25\right)\\</p>\\<p>x^3=a_{1}x^2+a_{1}x+25a_{1}-2a_{1}x^2-a_{1}x-2a_{0}x-a_{0}+b_{1}x^3+b_{1}x^2+25b_{1}x+b_{0}x^2+b_{0}x+25b_{0}\\</p>\\<p>x^3=b_{1}x^3+\left(b_{1}+b_{0}-a_{1}\right)x^2+\left(25b_{1}+b_{0}-2a_{0}\right)x+25b_{0}+25a_{1}-a_{0}\\</p>\\<p>\begin{cases}b_{1}=1\\b_{0}=a_{1}-1\\24+a_{1}=2a_{0}\\100a_{1}-50-24-a_{1}=0\end{cases}\\</p>\\<p>\begin{cases}b_{1}=1\\\b_{0}=a_{1}-1\\24+a_{1}=2a_{0}\\99a_{1}=74\end{cases}\\</p>\\<p>\begin{cases}b_{1}=1\\99b_{0}=-25\\99a_{0}=1225\\99a_{1}=74\end{cases}\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=\frac{1}{99}\frac{74x+1225}{x^2+x+25}+\frac{1}{99}\int{\frac{99x-25}{x^2+x+25}\mbox{d}x}\\</p>\\<p>\frac{1}{99}\int{\frac{99x-25}{x^2+x+25}\mbox{d}x}=\frac{1}{99}\int{\frac{99x-25}{\left(x+\frac{1}{2}\right)^2+\frac{99}{4}}\mbox{d}x}\\</p>\\<p>x+\frac{1}{2}=\frac{3}{2}\sqrt{11}t\\</p>\\<p>\mbox{d}x=\frac{3}{2}\sqrt{11}\mbox{d}t\\</p>\\<p>\frac{\sqrt{11}}{66}\int{\frac{99\left(\frac{3}{2}\sqrt{11}t-\frac{1}{2}\right)-25}{\frac{99}{4}t^2+\frac{99}{4}}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{66}\int{\frac{\frac{297}{2}\sqrt{11}t-\frac{149}{2}}{\frac{99}{4}t^2+\frac{99}{4}}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{4 \cdot 33}\cdot\frac{4}{99}\int{\frac{297\sqrt{11}t-149}{t^2+1}\mbox{d}t}\\</p>\\<p>\frac{297\cdot 11}{3267}\int{\frac{t}{t^2+1}\mbox{d}t}-\frac{149\sqrt{11}}{3267}\int{\frac{1}{t^2+1}\mbox{d}t}\\</p>\\<p>=\int{\frac{t}{t^2+1}\mbox{d}t}-\frac{149\sqrt{11}}{3267}\int{\frac{1}{t^2+1}\mbox{d}t}\\</p>\\<p>=\frac{1}{2}\ln{\left|t^2+1\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(t\right)}+C\\</p>\\<p>\frac{1}{2}\ln{\left|x^2+x+25\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(\frac{\sqrt{11}}{33}\left(2x+1\right)\right)}+C\\</p>\\<p>\int{\frac{x^3}{\left(x^2+x+25\right)^2}\mbox{d}x}=\frac{1}{99}\frac{74x+1225}{x^2+x+25}+\frac{1}{2}\ln{\left|x^2+x+25\right|}-\frac{149\sqrt{11}}{3267}\arctan{\left(\frac{\sqrt{11}}{33}\left(2x+1\right)\right)}+C\\</p>\\<p>


  • 2


#129051 Całka 24

Napisane przez Mariusz M w 03.03.2017 - 08:31

\int{\frac{\mbox{d}x}{\left(x^2+x+1\right)\sqrt{x^2+x-1}}}\\</p>\\<p>\sqrt{x^2+x-1}=t-x\\</p>\\<p>x^2+x-1=t^2-2tx+x^2\\</p>\\<p>x-1=t^2-2tx\\</p>\\<p>2tx+x=t^2+1\\</p>\\<p>x\left(2t+1\right)=t^2+1\\</p>\\<p>x=\frac{t^2+1}{2t+1}\\</p>\\<p>t-x=\frac{2t^2+t-t^2-1}{2t+1}=\frac{t^2+t-1}{2t+1}\\</p>\\<p>x^2+x+1=\frac{t^4+2t^2+1+2t^3+t^2+2t+1+4t^2+4t+1}{\left(2t+1\right)^2}\\<br>\\x^2+x+1=\frac{t^4+2t^3+7t^2+6t+3}{\left(2t+1\right)^2}\\</p>\\<p>\mbox{d}x=\frac{2t\left(2t+1\right)-2\left(t^2+1\right)}{\left(2t+1\right)^2}\mbox{d}t\\</p>\\<p>\mbox{d}x=\frac{2t^2+2t-2}{\left(2t+1\right)^2}\mbox{d}t\\</p>\\<p>\int{\frac{\left(2t+1\right)^2}{t^4+2t^3+7t^2+6t+3}\cdot\frac{2t+1}{t^2+t-1}\cdot\frac{2\left(t^2+t-1\right)}{\left(2t+1\right)^2}\mbox{d}t}\\</p>\\<p>\int{\frac{4t+2}{t^4+2t^3+7t^2+6t+3}\mbox{d}t}=\int{\frac{4t+2}{\left(t^2+t+3-\sqrt{6}\right)\left(t^2+t+3+\sqrt{6}\right)}\mbox{d}t}\\</p>\\<p>=\int{\frac{\sqrt{6}}{6}\left(\frac{2t+1}{t^2+t+3-\sqrt{6}}-\left(\frac{2t+1}{t^2+t+3-\sqrt{6}}\right)\right)\mbox{d}t}\\</p>\\<p>=\frac{\sqrt{6}}{6}\int{\frac{2t+1}{t^2+t+3-\sqrt{6}}\mbox{d}t}-\frac{\sqrt{6}}{6}\int{\frac{2t+1}{t^2+t+3+\sqrt{6}}\mbox{d}t}\\</p>\\<p>=\frac{\sqrt{6}}{6}\ln{\left|\frac{t^2+t+3-\sqrt{6}}{t^2+t+3+\sqrt{6}}\right|}+C</p>\\<p>


  • 1


#128996 całka 28

Napisane przez Mariusz M w 28.02.2017 - 05:35

\int{\frac{\mbox{d}x}{\left(x^2-1\right)^2}e^{x}\left(1+2x-x^2\right)}\\<br>\\\int{\frac{1-x^2}{\left(x^2-1\right)^2}e^{x}\mbox{d}x}+\int{\frac{2x}{\left(x^2-1\right)^2}e^{x}\mbox{d}x}\\<br>\\=-\int{\frac{e^{x}}{x^2-1}\mbox{d}x}+\int{\frac{2x}{\left(x^2-1\right)^2}e^{x}\mbox{d}x}\\<br>\\=-\int{\frac{e^{x}}{x^2-1}\mbox{d}x}-\frac{e^{x}}{x^2-1}+\int{\frac{e^{x}}{x^2-1}\mbox{d}x}\\<br>\\=-\frac{e^{x}}{x^2-1}+C


  • 1


#128938 Całka wymierna, Ostrogradskiego

Napisane przez Mariusz M w 21.02.2017 - 22:02

To podstawienie jest kiepskie pod względem metodyki nauczania bo całki z funkcji wymiernej poznajemy wcześniej

ale za to jakie modne amerykańskie

 

\int{\frac{3x+5}{\left(x^2+1\right)^3}\mbox{d}x}=\frac{a_{3}x^3+a_{2}x^2+a_{1}x+a_{0}}{\left(x^2+1\right)^2}+\int{\frac{b_{1}x+b_{0}}{x^2+1}\mbox{d}x}\\</p>\\<p>\frac{3x+5}{\left(x^2+1\right)^3}=\frac{\left(3a_{3}x^2+2a_{2}x+a_{1}\right)\left(x^2+1\right)^2-\left(a_{3}x^3+a_{2}x^2+a_{1}x+a_{0}\right)\left(1+x^2\right)\cdot 4x}{\left(1+x^2\right)^4}+\frac{b_{1}x+b_{0}}{x^2+1}\\</p>\\<p>\frac{3x+5}{\left(x^2+1\right)^3}=\frac{\left(3a_{3}x^2+2a_{2}x+a_{1}\right)\left(x^2+1\right)-\left(a_{3}x^3+a_{2}x^2+a_{1}x+a_{0}\right)\cdot 4x+\left(b_{1}x+b_{0}\right)\left(x^4+2x+1\right)}{\left(x^2+1\right)^3}\\</p>\\<p>3x+5=\left(3a_{3}x^2+2a_{2}x+a_{1}\right)\left(x^2+1\right)-\left(a_{3}x^3+a_{2}x^2+a_{1}x+a_{0}\right)\cdot 4x+\left(b_{1}x+b_{0}\right)\left(x^4+2x+1\right)\\</p>\\<p>3x+5=3a_{3}x^4+2a_{2}x^3+a_{1}x^2+3a_{3}x^2+2a_{2}x+a_{1}-4a_{3}x^{4}-4a_{2}x^{3}-4a_{1}x^2-4a_{0}x+b_{1}x^5+2b_{1}x^3+b_{1}x+b_{0}x^4+2b_{0}x^2+b_{0}\\</p>\\<p>3x+5=b_{1}x^5+\left(b_{0}-a_{3}\right)x^4+\left(2b_{1}-2a_{2}\right)x^3+\left(2b_{0}+3a_{3}-3a_{1}\right)x^2+\left(b_{1}+2a_{2}-4a_{0}\right)x+a_{1}+b_{0}\\</p>\\<p>\begin{cases}b_{1}=0\\b_{0}-a_{3}=0\\2b_{1}-2a_{2}=0\\2b_{0}+3a_{3}-3a_{1}=0\\b_{1}+2a_{2}-4a_{0}=3\\a_{1}+b_{0}=5\end{cases}\\</p>\\<p>\begin{cases}b_{1}=0\\b_{0}=a_{3}\\a_{2}=0\\5a_{3}-3a_{1}=0\\-4a_{0}=3\\a_{3}+a_{1}=5\end{cases}\\</p>\\<p>\begin{cases}b_{1}=0\\b_{0}=a_{3}\\a_{2}=0\\5a_{3}-3a_{1}=0\\-4a_{0}=3\\3a_{3}+3a_{1}=15\end{cases}\\</p>\\<p>\begin{cases}b_{1}=0\\b_{0}=a_{3}\\a_{2}=0\\3a_{1}=5a_{3}\\-4a_{0}=3\\8a_{3}=15\end{cases}\\</p>\\<p>\begin{cases}b_{1}=0\\b_{0}=\frac{15}{8}\\a_{3}=\frac{15}{8}\\a_{2}=0\\a_{1}=\frac{25}{8}\\a_{0}=-\frac{6}{8}\end{cases}\\</p>\\<p>\int{\frac{3x+5}{\left(x^2+1\right)^3}\mbox{d}x}=\frac{1}{8}\frac{15x^3+25x-6}{\left(x^2+1\right)^2}+\frac{15}{8}\arctan{\left(x\right)}+C</p>\\<p>

 

 

 


  • 3


#128919 Całka 19

Napisane przez Mariusz M w 19.02.2017 - 23:34

\sqrt{4-x^2}=\left(2+x\right)t\\</p>\\<p>\left(2+x\right)\left(2-x\right)=\left(2+x\right)^2t^2</p>\\<p>2-x=\left(2+x\right)t^2</p>\\<p>2-x=2t^2+xt^2</p>\\<p>x+xt^2=2-2t^2</p>\\<p>x\left(1+t^2\right)=2-2t^2</p>\\<p>x=\frac{2-2t^2}{1+t^2}=\frac{-2-2t^2+4}{1+t^2}=-2+\frac{4}{1+t^2}\\</p>\\<p>\left(2+x\right)t=\frac{4t}{1+t^2}\\</p>\\<p>\mbox{d}x=-4\left(1+t^2\right)^{-2}\cdot 2t\mbox{d}t\\</p>\\<p>\mbox{d}x=-\frac{8t}{\left(1+t^2\right)^{2}}\mbox{d}t\\</p>\\<p>\int{\frac{\left(1+t^2\right)^6}{64\left(1-t^2\right)^6}\cdot\frac{64t^3}{\left(1+t^2\right)^3}\cdot\left(-\frac{8t}{\left(1+t^2\right)^{2}}\right)\mbox{d}t}\\</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}\\</p>\\<p>\int{\left(-4t^3-4t^5\right)\frac{2t}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{4}{5}\int{\frac{3t^2+5t^4}{\left(1-t^2\right)^5}\mbox{d}t}</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{2}{5}\int{\left(3t+5t^3\right)\frac{2t}{\left(1-t^2\right)^5}\mbox{d}t}\\</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{1}{10}\frac{3t+5t^3}{\left(1-t^2\right)^4}-\frac{3}{10}\int{\frac{1+5t^2}{\left(1-t^2\right)^4}\mbox{d}t}\\</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{1}{10}\frac{3t+5t^3}{\left(1-t^2\right)^4}-\frac{3}{10}\int{\frac{1-t^2+6t^2}{\left(1-t^2\right)^4}\mbox{d}t}\\</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{1}{10}\frac{3t+5t^3}{\left(1-t^2\right)^4}-\frac{3}{10}\int{\frac{\mbox{d}t}{\left(1-t^2\right)^3}\mbox{d}t}-\frac{9}{10}\int{t\frac{2t}{\left(1-t^2\right)^4}\mbox{d}t}\\</p>\\<p></p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{1}{10}\frac{3t+5t^3}{\left(1-t^2\right)^4}-\frac{3}{10}\int{\frac{\mbox{d}t}{\left(1-t^2\right)^3}\mbox{d}t}-\frac{3}{10}\frac{t}{\left(1-t^2\right)^3}+\frac{3}{10}\int{\frac{\mbox{d}t}{\left(1-t^2\right)^3}}\\</p>\\<p>-8\int{\frac{t^4\left(1+t^2\right)}{\left(1-t^2\right)^6}\mbox{d}t}=-\frac{4}{5}\frac{t^3+t^5}{\left(1-t^2\right)^5}+\frac{1}{10}\frac{3t+5t^3}{\left(1-t^2\right)^4}-\frac{3}{10}\frac{t}{\left(1-t^2\right)^3}\\<br>\\


  • 1


#128916 Całka 37

Napisane przez Mariusz M w 19.02.2017 - 18:30

Jeśli chcesz sprowadzić do całki z funkcji wymiernej to

 

</p>\\<p>-\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)\\</p>\\<p>\sqrt{-\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)}=\left(x+2+\sqrt{5}\right)t\\</p>\\<p>-\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=\left(x+2+\sqrt{5}\right)^2t^2\\</p>\\<p>-\left(x+2-\sqrt{5}\right)=\left(x+2+\sqrt{5}\right)t^2\\</p>\\<p>-x-2+\sqrt{5}=xt^2+\left(2+\sqrt{5}\right)t^2\\</p>\\<p>-x-xt^2=\left(2+\sqrt{5}\right)t^2+2-\sqrt{5}\\</p>\\<p>x\left(1+t^2\right)=-\left(2+\sqrt{5}\right)t^2-2+\sqrt{5}\\</p>\\<p>x=-\frac{\left(2+\sqrt{5}\right)t^2+2-\sqrt{5}}{1+t^2}=-\frac{\left(2+\sqrt{5}\right)t^2+2+\sqrt{5}-2\sqrt{5}}{1+t^2}=-2-\sqrt{5}+2\sqrt{5}\frac{1}{\left(1+t^2\right)}\\</p>\\<p>\left(x+2+\sqrt{5}\right)t=2\sqrt{5}\frac{t}{\left(1+t^2\right)}\\</p>\\<p>\mbox{d}x=-2\sqrt{5}\cdot\left(t^2+1\right)^{-2}\cdot 2t\mbox{d}t\\</p>\\<p>\mbox{d}x=-4\sqrt{5}\frac{t}{\left(t^2+1\right)^2}\mbox{d}t\\</p>\\<p>\int{\left(-\frac{\left(2+\sqrt{5}\right)t^2+2-\sqrt{5}}{1+t^2}-1\right)\cdot\frac{1+t^2}{2\sqrt{5}t}\cdot\left(-4\sqrt{5}\frac{t}{\left(t^2+1\right)^2}\right)\mbox{d}t}</p>\\<p>

 

Jeśli nie chcesz sprowadzać całki do całki z funkcji wymiernej to

możesz zapisać trójmian kwadratowy pod pierwiastkiem w postaci kanonicznej

 


  • 1


#128184 całka10

Napisane przez Mariusz M w 01.10.2016 - 00:53

\int{\frac{x^2}{\sqrt{13+11x^2}}\mbox{d}x}\\</p>\\<p>\sqrt{13+11x^2}=t-\sqrt{11}x\\</p>\\<p>13+11x^2=t^2-2\sqrt{11}tx+11x^2\\</p>\\<p>13=t^2-2\sqrt{11}tx\\</p>\\<p>2\sqrt{11}tx=t^2-13</p>\\<p>x=\frac{t^2-13}{2\sqrt{11}t}\\</p>\\<p>\mbox{d}x=\frac{2t\cdot 2\sqrt{11}t-2\sqrt{11}\left(t^2-13\right)}{44t^2}\mbox{d}t\\</p>\\<p>\mbox{d}x=\sqrt{11}\frac{t^2+13}{22t^2}\mbox{d}t\\</p>\\<p>t-\sqrt{11}x=\frac{2\sqrt{11}t^2-\sqrt{11}t^2+13\sqrt{11}}{2\sqrt{11}t}\\</p>\\<p>t-\sqrt{11}x=\frac{t^2+13}{2t}\\</p>\\<p>\int{\frac{\left(t^2-13\right)^2}{44t^2}\cdot\frac{2t}{t^2+13}\cdot\sqrt{11}\frac{t^2+13}{22t^2}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{484}\int{\frac{\left(t^2-13\right)^2}{t^3}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{484}\int{\frac{t^4-26t^2+169}{t^3}\mbox{d}t}\\</p>\\<p>\frac{\sqrt{11}}{484}\left(\int{t\mbox{d}t}+169\int{\frac{\mbox{d}t}{t^3}}-26\int{\frac{\mbox{d}t}{t}}\right)\\</p>\\<p>\frac{\sqrt{11}}{484}\left(\frac{t^2}{2}-\frac{169}{2}\frac{1}{t^2}-26\ln{\left|t\right|}\right)+C\\</p>\\<p>\frac{\sqrt{11}}{242}\left(\frac{t^4-169}{4t^2}-13\ln{\left|t\right|}\right)+C\\</p>\\<p>\frac{\sqrt{11}}{242}\left(\frac{\left(t^2-13\right)\left(t^2+13\right)}{4t^2}-13\ln{\left|t\right|}\right)+C\\</p>\\<p>\frac{\sqrt{11}}{242}\left(\sqrt{11}x\sqrt{11x^2+13}-13\ln{\left|\sqrt{11}x+\sqrt{11x^2+13}\right|}\right)+C\\</p>\\<p>

 


  • 1


#127944 całka12

Napisane przez Mariusz M w 13.08.2016 - 04:32

\int{\frac{\mbox{d}x}{\sqrt{x^2-2x}}}\\</p>\\<p>\sqrt{x^2-2x}=t-x\\</p>\\<p>x^2-2x=t^2-2tx+x^2</p>\\<p>-2x=t^2-2tx\\</p>\\<p>2tx-2x=t^2</p>\\<p>x\left(2t-2\right)=t^2\\</p>\\<p>x=\frac{t^2}{2t-2}\\</p>\\<p>t-x=\frac{2t^2-2t-t^2}{2t-2}=\frac{t^2-2t}{2t-2}\\</p>\\<p>\mbox{d}x=\frac{2t\left(2t-2\right)-2t^2}{\left(2t-2\right)^2}\mbox{d}t\\</p>\\<p>\mbox{d}x=\frac{t^2-2t}{2\left(t-1\right)^2}\mbox{d}t\\</p>\\<p>\int{\frac{2\left(t-1\right)}{t^2-2t}\cdot\frac{t^2-2t}{2\left(t-1\right)^2}\mbox{d}t}\\</p>\\<p>\int{\frac{\mbox{d}t}{t-1}}\\</p>\\<p>\ln{\left|t-1\right|}+C\\</p>\\<p>\ln{\left|x-1+\sqrt{x^2-2x}\right|}+C\\</p>\\<p>


  • 1


#127841 Całka funkcji trygonometrycznej 6

Napisane przez Mariusz M w 27.07.2016 - 18:58

Jarek podstawienie za tangens połowy kąta jest dobre ale ja proponowałbym złożenie podstawienia Eulera z podstawieniem za sinus

 

\sqrt{\sin^{2}{x}+2}=t-\sin{x}

 

Później podstawienie  u=t^2

aby mieć nieco mniej współczynników w rozkładzie na sumę ułamków prostych


  • 1