Skocz do zawartości

  •  
  • Mini kompendium
  • MimeTeX
  • Regulamin

- zdjęcie

Mariusz M

Rejestracja: 11 Sep 2010
Offline Ostatnio: dziś, 05:41
*****

Moje posty

W temacie: Wyznaczanie równania funkcji wielomianowej 4 stopnia

dziś, 04:36

Interpolacja Lagrange

 

\sum_{i=0}^{n}y_{i}\Pi_{j=0\wedge i\neq j}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}

 


W temacie: Czynnik całkujący

25.03.2017 - 17:20

Ciekawe czemu chcą aby sprowadzać do zupełnego skoro można sprowadzić do liniowego
lub od razu zastosować podstawienie zaproponowane przez Bernoulliego

y=uv


W temacie: Rozwiąż równanie różnicowe

19.03.2017 - 04:58

y_{n+2}-4y_{n+1}+4y_{n}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>y_{n}-4y_{n-1}+4y_{n-2}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>y_{n}=4y_{n-1}-4y_{n-2}=0 \qquad y_{0}=3\\y_{1}=2\\</p>\\<p>Y\left(t\right)=\sum_{n=0}^{\infty}y_{n}t^n\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=\sum_{n=2}^{\infty}4y_{n-1}t^n+\sum_{n=2}^{\infty}{-4y_{n-2}t^n}\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=4t\sum_{n=2}^{\infty}y_{n-1}t^{n-1}-4t^2\sum_{n=2}^{\infty}{y_{n-2}t^{n-2}}\\</p>\\<p>\sum_{n=2}^{\infty}y_{n}t^{n}=4t\sum_{n=1}^{\infty}y_{n}t^{n}-4t^2\sum_{n=0}^{\infty}{y_{n}t^{n}}\\</p>\\<p>\sum_{n=0}^{\infty}y_{n}t^{n}-3-2t=4t\left(\sum_{n=0}^{\infty}y_{n}t^{n}-3\right)-4t^2\sum_{n=0}^{\infty}{y_{n}t^{n}}\\</p>\\<p>Y\left(t\right)-3-2t=4tY\left(t\right)-12t-4t^2Y\left(t\right)\\</p>\\<p>Y\left(t\right)\left(1-4t+4t^2\right)=-10t+3\\</p>\\<p>Y\left(t\right)=\frac{-10t+3}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\frac{5-10t-2}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\frac{5}{1-2t}-\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}2^{n}t^n=\frac{1}{1-2t}\\</p>\\<p>\frac{\mbox{d}}{\mbox{d}t}\left(\sum_{n=0}^{\infty}2^{n}t^n\right)=\frac{\mbox{d}}{\mbox{d}t}\left(\frac{1}{1-2t}\right)\\</p>\\<p>\sum_{n=0}^{\infty}n2^{n}t^{n-1}=-\frac{1}{\left(1-2t\right)^2}\cdot\left(-2\right)\\</p>\\<p>\sum_{n=1}^{\infty}n2^{n}t^{n-1}=\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}\left(n+1\right)2^{n+1}t^{n}=\frac{2}{\left(1-2t\right)^2}\\</p>\\<p>\sum_{n=0}^{\infty}\left(n+1\right)2^{n}t^{n}=\frac{1}{\left(1-2t\right)^2}\\</p>\\<p>Y\left(t\right)=\sum_{n=0}^{\infty}5\cdot 2^{n}t^{n}-2\sum_{n=0}^{\infty}\left(n+1\right)2^{n}t^n\\</p>\\<p>y_{n}=5\cdot 2^{n}-2\left(n+1\right)\cdot 2^{n}\\</p>\\<p>y_{n}=\left(3-2n\right)\cdot 2^{n}</p>\\<p>


W temacie: Implementacja kolejki priorytetowej w c++

12.03.2017 - 19:19

Czytałeś rozdział 7. Cormena Wprowadzenie do algorytmów ?

Tam masz przydatne funkcje

 

Pewnie nie możesz korzystać z STL

 

Kopiec binarny możesz zrealizować na tablicy albo na drzewie

Jeśli chodzi o reprezentację tablicową to potrzebujesz odpowiedników takich funkcji jak malloc ,realloc,free

Funkcję malloc zastąpisz przez new , funkcję free zastąpisz przez delete natomiast nie mam pomysłu jak zastąpić realloc

 

Reprezentacja drzewiasta będzie nieco wolniejsza


W temacie: Całka 13

05.03.2017 - 16:28

Można od razu przez części całkując jedynkę